771 research outputs found

    Survey of impact damper performance

    Get PDF
    An overall picture of the impact damper is obtained by using time-history solutions of the system motion for the oscillator in free decay. The impactor behavior depends very strongly on oscillator amplitude, and free decay can sample the full range of behavior from an infinite number of impacts per cycle at high amplitude to no impacts at low amplitude. The overall picture cannot be obtained by analysis of steady-state forced response. Yet, the predictions are relevant to forced response behavior when the damping is relatively light. Three major regimes of impact behavior are shown to exist: low, middle and high amplitude ranges

    Experimental evaluation of a tuned electromagnetic damper for vibration control of cryogenic turbopump rotors

    Get PDF
    Experiments were performed on a passive tuned electromagnetic damper that could be used for damping rotor vibrations in cryogenic turbopumps for rocket engines. The tests were performed in a rig that used liquid nitrogen to produce cryogenic turbopump temperatures. This damper is most effective at cryogenic temperatures and is not a viable damper at room temperature. The unbalanced amplitude response of the rotor shaft was measured for undamped (baseline) and damped conditions at the critical speeds of the rotor (approx. 5900 to 6400 rpm) and the data were compared. The tests were performed for a speed range between 900 and 10 000 rpm. The tests revealed that the damper is very effective for damping single-mode narrow bandwidth amplitude response but is less effective in damping broadband response or multimode amplitude response

    Performance tests of a cryogenic hybrid magnetic bearing for turbopumps

    Get PDF
    Experiments were performed on a Hybrid Magnetic Bearing designed for cryogenic applications such as turbopumps. This bearing is considerably smaller and lighter than conventional magnetic bearings and is more efficient because it uses a permanent magnet to provide a bias flux. The tests were performed in a test rig that used liquid nitrogen to simulate cryogenic turbopump temperatures. The bearing was tested at room temperature and at liquid nitrogen temperature (-320 F). The maximum speed for the test rig was 14000 rpm. For a magnetic bearing stiffness of 20000 lb/in, the flexible rotor had two critical speeds. A static (nonrotating) bearing stiffness of 85000 lb/in was achieved. Magnetic bearing stiffness, permanent magnet stiffness, actuator gain, and actuator force interaction between two axes were evaluated, and controller/power amplifier characteristics were determined. The tests revealed that it is feasible to use this bearing in the cryogenic environment and to control the rotor dynamics of flexible rotors when passing through bending critical speeds. The tests also revealed that more effort should be placed on enhancing the controller to achieve higher bearing stiffness and on developing displacement sensors that reduce drift caused by temperature and reduce sensor electrical noise

    Low frequency vibration isolation technology for microgravity space experiments

    Get PDF
    The dynamic acceleration environment observed on Space Shuttle flights to date and predicted for the Space Station has complicated the analysis of prior microgravity experiments and prompted concern for the viability of proposed space experiments requiring long-term, low-g environments. Isolation systems capable of providing significant improvements in this environment exist, but have not been demonstrated in flight configurations. This paper presents a summary of the theoretical evaluation for two one degree-of-freedom (DOF) active magnetic isolators and their predicted response to both direct and base excitations, that can be used to isolate acceleration sensitive microgravity space experiments

    Magnetic bearings with zero bias

    Get PDF
    A magnetic bearing operating without a bias field has supported a shaft rotating at speeds up to 12,000 rpm with the usual four power supplies and with only two. A magnetic bearing is commonly operated with a bias current equal to half of the maximum current allowable in its coils. This linearizes the relation between net force and control current and improves the force slewing rate and hence the band width. The steady bias current dissipates power, even when no force is required from the bearing. The power wasted is equal to two-thirds of the power at maximum force output. Examined here is the zero bias idea. The advantages and disadvantages are noted

    Nonintrusive inertial vibration isolation technology for microgravity space experiments

    Get PDF
    The dynamic acceleration environment observed on Space Shuttle flights to date and predicted for the Space Station has complicated the analysis of prior microgravity experiments and prompted concern for the viability of proposed space experiments requiring long-term, microgravity environments. Isolation systems capable of providing significant improvements to this environment exist, but at present have not been demonstrated in flight configurations. A summary of the theoretical evaluation for two one degree-of-freedom (DOF) active magnetic isolators and their predicted response to both direct and base excitations is presented. These isolators can be used independently or in concert to isolate acceleration-sensitive microgravity space experiments, dependent on the isolation capability required for specific experimenter needs

    Materials Aspects of Turboelectric Aircraft Propulsion

    Get PDF
    The turboelectric distributed propulsion approach for aircraft makes a contribution to all four "corners" of NASA s Subsonic Fixed Wing trade space, reducing fuel burn, noise, emissions and field length. To achieve the system performance required for the turboelectric approach, a number of advances in materials and structures must occur. These range from improved superconducting composites to structural composites for support windings in superconducting motors at cryogenic temperatures. The rationale for turboelectric distributed propulsion and the materials research and development opportunities that it may offer are outlined

    Synchronous Control Effort Minimized for Magnetic-Bearing-Supported Shaft

    Get PDF
    Various disturbances that are synchronous with the shaft speed can complicate radial magnetic bearing control. These include position sensor target irregularities (runout) and shaft imbalance. The method presented here allows the controller to ignore all synchronous harmonics of the shaft position input (within the closed-loop bandwidth) and to respond only to asynchronous motions. The result is reduced control effort

    Cryogenic Electric Motor Tested

    Get PDF
    Technology for pollution-free "electric flight" is being evaluated in a number of NASA Glenn Research Center programs. One approach is to drive propulsive fans or propellers with electric motors powered by fuel cells running on hydrogen. For large transport aircraft, conventional electric motors are far too heavy to be feasible. However, since hydrogen fuel would almost surely be carried as liquid, a propulsive electric motor could be cooled to near liquid hydrogen temperature (-423 F) by using the fuel for cooling before it goes to the fuel cells. Motor windings could be either superconducting or high purity normal copper or aluminum. The electrical resistance of pure metals can drop to 1/100th or less of their room-temperature resistance at liquid hydrogen temperature. In either case, super or normal, much higher current density is possible in motor windings. This leads to more compact motors that are projected to produce 20 hp/lb or more in large sizes, in comparison to on the order of 2 hp/lb for large conventional motors. High power density is the major goal. To support cryogenic motor development, we have designed and built in-house a small motor (7-in. outside diameter) for operation in liquid nitrogen

    In-Medium Effects on Charmonium Production in Heavy-Ion Collisions

    Get PDF
    Charmonium production in heavy-ion collisions is investigated within a kinetic theory framework incorporating in-medium properties of open- and hidden-charm states in line with recent QCD lattice calculations. A continuously decreasing open-charm threshold across the phase boundary of hadronic and quark-gluon matter is found to have important implications for the equilibrium abundance of charmonium states. The survival of J/ψJ/\psi resonance states above the transition temperature enables their recreation also in the Quark-Gluon Plasma. Including effects of chemical and thermal off-equilibrium, we compare our model results to available experimental data at CERN-SPS and BNL-RHIC energies. In particular, earlier found discrepancies in the ψ/ψ\psi'/\psi ratio can be resolved.Comment: 4 pages RevTex including 4 eps-figures. v2: Minor modifications and clarifications, typos corrected, Fig. 4 update
    corecore